Intercropping Advantages

Simon Leupi – Damien Tschopp – Sandra Wenger

Rhizosphere Ecology 2016

Background

Intercropping

- → Growing two or more crops simultaneously on the same field
- → Potential for higher resource use efficiency than in monocropping
- → Mechanisms for potential advantages are:

reduced competition, complementarity, facilitation

Study Approach

- → Experiment with field pea and spring barley (see 'Treatments')
- → Growth in pots under deficiency of P and micronutrients
- → Substituted design (see 'Treatments')

Research Questions

Land Equivalence Ratio

Intercrop A + Intercrop B Monocrop A + Monocrop B

needed for intercropping relative

LER is the proportion of land

Intercropping advantage

Advantage of intercrop

component A or B

Intercropping disadvantage

to monocropping

LER > 1

LER < 1

LER > 0.5

- → Does intercropping increase biomass production and P and Zn uptake?
- → Which are the plant traits possibly contributing to any advantages?

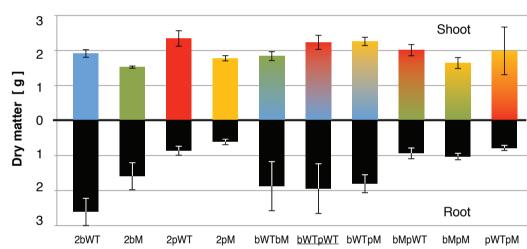
Hypotheses

LER

- \rightarrow Legumes promote P and Zn uptake in cereals.
- → Improved P and Zn uptake translates into increased biomass production.

Outcome

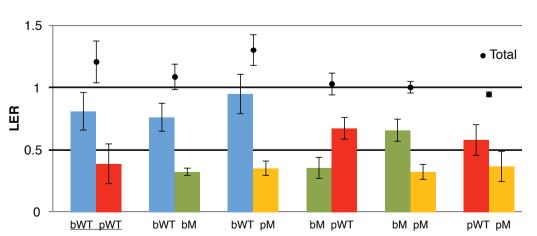
- → Higher relative biomass production probably resulted from increased P and Zn content.
- → Intraspecific competition > interspecific competition
- → Our findings comply with other studies on nutrient availability in cereal-legume intercropping.
- → Intercropping increases nutrient acquisition, but does not necessarily translate into net yield benefits.

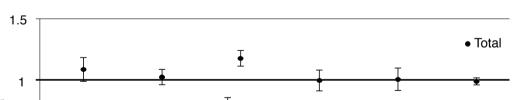

Facilitation

- → P and Zn mobilization by root exudates of pea
- → Efficiently absorbed and translated into biomass by barley

Competition

- → plant density effect = intraspecific competition
- → density effect higher in barley with large root system
- → self-inhibition in pea due to smaller root system
- → larger advantages in barley by interspecific competition
- → pea mutant restricted by root-trait defects^{1, 2}.


Absolute Root and Shoot Biomass


No absolute intercropping advantage

- \rightarrow Total biomass: wild type > mutant
- → Root biomass: barley >>> pea

Relative Shoot P Content

Relative Shoot Biomass

Treatments

bWT

pWT

bM

рМ

barley wild type

pea wild type

barley mutant

no root hairs

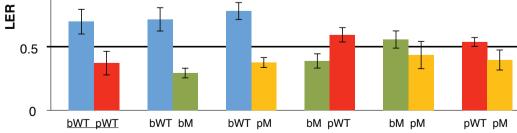
pea mutant

bWTbM

bWTpWT

bWTpM

bMpWT


bMpM

pWTpM

no AMF, no rhizobia

Note: Virtually identical results for Zn content.

Intercropping advantage: Increased P and Zn acquisition from soil → Advantage is larger with pea mutant than with pea wild type → Barley profits

Intercropping advantage: Increased shoot biomass production

- \rightarrow Advantage is larger with pea mutant than with pea wild type
- → Barley profits from reduced competition and increased nutrient availability

References

1 Li L, Li S, Sun J et al (2007). PNAS, 104(27): 11192–11196.

2 Li S, Wang Z, Stewart BA (2011). Advances in Agronomy, 110(3): 125–130.

